Exploring a Framework for Instance Basedlearning and Naive Bayesian
نویسنده
چکیده
The relative performance of diierent methods for classiier learning varies across domains. Some recent Instance Based Learning (IBL) methods, such as IB1-MVDM* 10 , use similarity measures based on conditional class probabilities. These probabilities are a key component of Naive Bayes methods. Given this commonality of approach, it is of interest to consider how the diierences between the two methods are linked to their relative performance in diierent domains. Here we interpret Naive Bayes in an IBL like framework, identifying diierences between Naive Bayes and IB1-MVDM* in this framework. Experiments on variants of IB1-MVDM* that lie between it and Naive Bayes in the framework are conducted on sixteen domains. The results strongly suggest that the relative performance of Naive Bayes and IB1-MVDM* is linked to the extent to which each class can be satisfactorily represented by a single instance in the IBL framework. However, this is not the only factor that appears signiicant.
منابع مشابه
A New Hybrid Framework for Filter based Feature Selection using Information Gain and Symmetric Uncertainty (TECHNICAL NOTE)
Feature selection is a pre-processing technique used for eliminating the irrelevant and redundant features which results in enhancing the performance of the classifiers. When a dataset contains more irrelevant and redundant features, it fails to increase the accuracy and also reduces the performance of the classifiers. To avoid them, this paper presents a new hybrid feature selection method usi...
متن کاملBayes Optimal Instance-Based Learning
In this paper we present a probabilistic formalization of the instance-based learning approach. In our Bayesian framework, moving from the construction of an explicit hypothesis to a data-driven instance-based learning approach, is equivalent to averaging over all the (possibly innnitely many) individual models. The general Bayesian instance-based learning framework described in this paper can ...
متن کاملA Validation Test Naive Bayesian Classification Algorithm and Probit Regression as Prediction Models for Managerial Overconfidence in Iran's Capital Market
Corporate directors are influenced by overconfidence, which is one of the personality traits of individuals; it may take irrational decisions that will have a significant impact on the company's performance in the long run. The purpose of this paper is to validate and compare the Naive Bayesian Classification algorithm and probit regression in the prediction of Management's overconfident at pre...
متن کاملLabel-Driven Learning Framework: Towards More Accurate Bayesian Network Classifiers through Discrimination of High-Confidence Labels
Bayesian network classifiers (BNCs) have demonstrated competitive classification accuracy in a variety of real-world applications. However, it is error-prone for BNCs to discriminate among high-confidence labels. To address this issue, we propose the label-driven learning framework, which incorporates instance-based learning and ensemble learning. For each testing instance, high-confidence labe...
متن کاملA Bayesian mixture model for classification of certain and uncertain data
There are different types of classification methods for classifying the certain data. All the time the value of the variables is not certain and they may belong to the interval that is called uncertain data. In recent years, by assuming the distribution of the uncertain data is normal, there are several estimation for the mean and variance of this distribution. In this paper, we co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994